Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Chem Biol Interact ; 394: 111002, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604395

RESUMO

Lung inflammatory disorders are a major global health burden, impacting millions of people and raising rates of morbidity and death across many demographic groups. An industrial chemical and common environmental contaminant, formaldehyde (FA) presents serious health concerns to the respiratory system, including the onset and aggravation of lung inflammatory disorders. Epidemiological studies have shown significant associations between FA exposure levels and the incidence and severity of several respiratory diseases. FA causes inflammation in the respiratory tract via immunological activation, oxidative stress, and airway remodelling, aggravating pre-existing pulmonary inflammation and compromising lung function. Additionally, FA functions as a respiratory sensitizer, causing allergic responses and hypersensitivity pneumonitis in sensitive people. Understanding the complicated processes behind formaldehyde-induced lung inflammation is critical for directing targeted strategies aimed at minimizing environmental exposures and alleviating the burden of formaldehyde-related lung illnesses on global respiratory health. This abstract explores the intricate relationship between FA exposure and lung inflammatory diseases, including asthma, bronchitis, allergic inflammation, lung injury and pulmonary fibrosis.

2.
Life Sci ; 345: 122613, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582393

RESUMO

Glioblastoma (GBM) is the most prevalent and deadly primary brain tumor type, with a discouragingly low survival rate and few effective treatments. An important function of the EGFR signalling pathway in the development of GBM is to affect tumor proliferation, persistence, and treatment resistance. Advances in molecular biology in the last several years have shown how important ncRNAs are for controlling a wide range of biological activities, including cancer progression and development. NcRNAs have become important post-transcriptional regulators of gene expression, and they may affect the EGFR pathway by either directly targeting EGFR or by modifying important transcription factors and downstream signalling molecules. The EGFR pathway is aberrantly activated in response to the dysregulation of certain ncRNAs, which has been linked to GBM carcinogenesis, treatment resistance, and unfavourable patient outcomes. We review the literature on miRNAs, circRNAs and lncRNAs that are implicated in the regulation of EGFR signalling in GBM, discussing their mechanisms of action, interactions with the signalling pathway, and implications for GBM therapy. Furthermore, we explore the potential of ncRNA-based strategies to overcome resistance to EGFR-targeted therapies, including the use of ncRNA mimics or inhibitors to modulate the activity of key regulators within the pathway.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Humanos , Receptores ErbB/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Transdução de Sinais , MicroRNAs/metabolismo , RNA não Traduzido/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
3.
Pathol Res Pract ; 256: 155259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503004

RESUMO

Circular RNAs (circRNAs) have been recognized as key components in the intricate regulatory network of the KRAS pathway across various cancers. The KRAS pathway, a central signalling cascade crucial in tumorigenesis, has gained substantial emphasis as a possible therapeutic target. CircRNAs, a subgroup of non-coding RNAs known for their closed circular arrangement, play diverse roles in gene regulation, contributing to the intricate landscape of cancer biology. This review consolidates existing knowledge on circRNAs within the framework of the KRAS pathway, emphasizing their multifaceted functions in cancer progression. Notable circRNAs, such as Circ_GLG1 and circITGA7, have been identified as pivotal regulators in colorectal cancer (CRC), influencing KRAS expression and the Ras signaling pathway. Aside from their significance in gene regulation, circRNAs contribute to immune evasion, apoptosis, and drug tolerance within KRAS-driven cancers, adding complexity to the intricate interplay. While our comprehension of circRNAs in the KRAS pathway is evolving, challenges such as the diverse landscape of KRAS mutant tumors and the necessity for synergistic combination therapies persist. Integrating cutting-edge technologies, including deep learning-based prediction methods, holds the potential for unveiling disease-associated circRNAs and identifying novel therapeutic targets. Sustained research efforts are crucial to comprehensively unravel the molecular mechanisms governing the intricate interplay between circRNAs and the KRAS pathway, offering insights that could potentially revolutionize cancer diagnostics and treatment strategies.


Assuntos
Neoplasias , RNA Circular , Humanos , RNA Circular/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias/genética , Processos Neoplásicos
4.
Pathol Res Pract ; 256: 155257, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537524

RESUMO

Circular RNAs (circRNAs) constitute a recently identified category of closed continuous loop RNA transcripts, serving as a subset of competing endogenous RNAs (ceRNAs) with the capacity to modulate genes by acting as microRNA sponges. In the context of cancer growth, numerous investigations have explored the potential functions of circRNAs, revealing their diverse functions either as oncogenes, promoting cancer progression, or as tumor suppressors, mitigating disease development. Among these, circRNA ADAM9 (Circ-ADAM9) is now recognized as an important player in a variety of mechanisms, both physiological and pathological, especially in cancer. The aberrant expression of Circ-ADAM9 has been observed across multiple human malignancies, implying a significant involvement in tumorigenesis. This comprehensive review aims to synthesize recent findings elucidating the function of Circ-ADAM9 in many malignancies. Additionally, the review explores the possibility of Circ-ADAM9 as a valuable biomarker, offering insights into its prognostic, diagnostic, and therapeutic implications. By summarizing the latest discoveries in this field, the review contributes to our understanding of the multifaceted contribution of Circ-ADAM9 in tumor biology and its potential applications in clinical settings.


Assuntos
MicroRNAs , Neoplasias , Humanos , RNA Circular/genética , Neoplasias/genética , MicroRNAs/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Proteínas de Membrana/genética , Proteínas ADAM
5.
Pathol Res Pract ; 256: 155224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452584

RESUMO

Sepsis, a potentially fatal illness caused by an improper host response to infection, remains a serious problem in the world of healthcare. In recent years, the role of ncRNA has emerged as a pivotal aspect in the intricate landscape of cellular regulation. The exploration of ncRNA-mediated regulatory networks reveals their profound influence on key molecular pathways orchestrating pyroptotic responses during septic conditions. Through a comprehensive analysis of current literature, we navigate the diverse classes of ncRNAs, including miRNAs, lncRNAs, and circRNAs, elucidating their roles as both facilitators and inhibitors in the modulation of pyroptotic processes. Furthermore, we highlight the potential diagnostic and therapeutic implications of targeting these ncRNAs in the context of sepsis, aiming to cover the method for novel and effective strategies to mitigate the devastating consequences of septic pathogenesis. As we unravel the complexities of this regulatory axis, a deeper understanding of the intricate crosstalk between ncRNAs and pyroptosis emerges, offering promising avenues for advancing our approach to sepsis intervention. The intricate pathophysiology of sepsis is examined in this review, which explores the dynamic interaction between ncRNAs and pyroptosis, a highly regulated kind of programmed cell death.


Assuntos
MicroRNAs , RNA Longo não Codificante , Sepse , Humanos , Piroptose/fisiologia , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética
6.
Exp Gerontol ; 188: 112389, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432575

RESUMO

Aging-related diseases (ARDs) are a major global health concern, and the development of effective therapies is urgently needed. Kaempferol, a flavonoid found in several plants, has emerged as a promising candidate for ameliorating ARDs. This comprehensive review examines Kaempferol's chemical properties, safety profile, and pharmacokinetics, and highlights its potential therapeutic utility against ARDs. Kaempferol's therapeutic potential is underpinned by its distinctive chemical structure, which confers antioxidative and anti-inflammatory properties. Kaempferol counteracts reactive oxygen species (ROS) and modulates crucial cellular pathways, thereby combating oxidative stress and inflammation, hallmarks of ARDs. Kaempferol's low toxicity and wide safety margins, as demonstrated by preclinical and clinical studies, further substantiate its therapeutic potential. Compelling evidence supports Kaempferol's substantial potential in addressing ARDs through several mechanisms, notably anti-inflammatory, antioxidant, and anti-apoptotic actions. Kaempferol exhibits a versatile neuroprotective effect by modulating various proinflammatory signaling pathways, including NF-kB, p38MAPK, AKT, and the ß-catenin cascade. Additionally, it hinders the formation and aggregation of beta-amyloid protein and regulates brain-derived neurotrophic factors. In terms of its anticancer potential, kaempferol acts through diverse pathways, inducing apoptosis, arresting the cell cycle at the G2/M phase, suppressing epithelial-mesenchymal transition (EMT)-related markers, and affecting the phosphoinositide 3-kinase/protein kinase B signaling pathways. Subsequent studies should focus on refining dosage regimens, exploring innovative delivery systems, and conducting comprehensive clinical trials to translate these findings into effective therapeutic applications.


Assuntos
Quempferóis , Síndrome do Desconforto Respiratório , Humanos , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Quempferóis/química , Fosfatidilinositol 3-Quinases , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Envelhecimento , Síndrome do Desconforto Respiratório/tratamento farmacológico
7.
Pathol Res Pract ; 256: 155260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493726

RESUMO

Lung cancer is a malignant tumor that develops in the lungs due to the uncontrolled growth of aberrant cells. Heavy metals, such as arsenic, cadmium, mercury, and lead, are metallic elements characterized by their high atomic weights and densities. Anthropogenic activities, such as industrial operations and pollution, have the potential to discharge heavy metals into the environment, hence presenting hazards to ecosystems and human well-being. The TGF-ß signalling pathways have a crucial function in controlling several cellular processes, with the ability to both prevent and promote tumor growth. TGF-ß regulates cellular responses by interacting in both canonical and non-canonical signalling pathways. Research employing both in vitro and in vivo models has shown that heavy metals may trigger TGF-ß signalling via complex molecular pathways. Experiments conducted in a controlled laboratory environment show that heavy metals like cadmium and arsenic may directly bind to TGF-ß receptors, leading to alterations in their structure that enable the receptor to be phosphorylated. Activation of this route sets in motion subsequent signalling cascades, most notably the canonical Smad pathway. The development of lung cancer has been linked to heavy metals, which are ubiquitous environmental pollutants. To grasp the underlying processes, it is necessary to comprehend their molecular effect on TGF-ß pathways. With a particular emphasis on its consequences for lung cancer, this abstract delves into the complex connection between exposure to heavy metals and the stimulation of TGF-ß signalling.


Assuntos
Arsênio , Poluentes Ambientais , Neoplasias Pulmonares , Metais Pesados , Humanos , Cádmio/análise , Arsênio/toxicidade , Arsênio/análise , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Ecossistema , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Pulmão/metabolismo
8.
EXCLI J ; 23: 34-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343745

RESUMO

This review delves into the pivotal role of the long non-coding RNA NEAT1 in cancer biology, particularly in lung cancer (LC). It emphasizes NEAT1's unique subcellular localization and active involvement in gene regulation and chromatin remodeling. The review highlights NEAT1's impact on LC development and progression, including cell processes such as proliferation, migration, invasion, and resistance to therapy, positioning it as a potential diagnostic marker and therapeutic target. The complex web of NEAT1's regulatory interactions with proteins and microRNAs is explored, alongside challenges in targeting it therapeutically. The review concludes optimistically, suggesting future avenues for research and personalized LC therapies, shedding light on NEAT1's crucial role in LC. See also the Graphical abstract(Fig. 1).

9.
PeerJ ; 12: e16795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313003

RESUMO

This study explores the neuroprotective potential of hibiscetin concerning memory deficits induced by lipopolysaccharide (LPS) injection in rats. The aim of this study is to evaluate the effect of hibiscetin against LPS-injected memory deficits in rats. The behavioral paradigms were conducted to access LPS-induced memory deficits. Various biochemical parameters such as acetyl-cholinesterase activity, choline-acetyltransferase, antioxidant (superoxide dismutase, glutathione transferase, catalase), oxidative stress (malonaldehyde), and nitric oxide levels were examined. Furthermore, neuroinflammatory parameters such as tumor necrosis factor-α, interleukin-1ß (IL-1ß), IL-6, and nuclear factor-kappa B expression and brain-derived neurotrophic factor as well as apoptosis marker i.e., caspase-3 were evaluated. The results demonstrated that the hibiscetin-treated group exhibited significant recovery in LPS-induced memory deficits in rats by using behavioral paradigms, biochemical parameters, antioxidant levels, oxidative stress, neuroinflammatory markers, and apoptosis markers. Recent research suggested that hibiscetin may serve as a promising neuroprotective agent in experimental animals and could offer an alternative in LPS-injected memory deficits in rodent models.


Assuntos
Produtos Biológicos , Transtornos da Memória , NF-kappa B , Animais , Ratos , Antioxidantes/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3/metabolismo , Lipopolissacarídeos/toxicidade , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , NF-kappa B/metabolismo , Produtos Biológicos/farmacologia
10.
Pathol Res Pract ; 255: 155173, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364649

RESUMO

The human gut microbiota (GM), which consists of a complex and diverse ecosystem of bacteria, plays a vital role in overall wellness. However, the delicate balance of this intricate system is being compromised by the widespread presence of environmental toxins. The intricate connection between contaminants in the environment and human well-being has garnered significant attention in recent times. Although many environmental pollutants and their toxicity have been identified and studied in laboratory settings and animal models, there is insufficient data concerning their relevance to human physiology. Consequently, research on the toxicity of environmental toxins in GM has gained prominence in recent years. Various factors, such as air pollution, chemicals, heavy metals, and pesticides, have a detrimental impact on the composition and functioning of the GM. This comprehensive review aims to comprehend the toxic effects of numerous environmental pollutants, including antibiotics, endocrine-disrupting chemicals, heavy metals, and pesticides, on GM by examining recent research findings. The current analysis concludes that different types of environmental toxins can lead to GM dysbiosis and have various potential adverse effects on the well-being of animals. We investigate the alterations to the GM composition induced by contaminants and their impact on overall well-being, providing a fresh perspective on research related to pollutant exposure.


Assuntos
Poluentes Ambientais , Microbioma Gastrointestinal , Metais Pesados , Praguicidas , Animais , Humanos , Microbioma Gastrointestinal/fisiologia , Ecossistema , Poluentes Ambientais/toxicidade , Metais Pesados/toxicidade , Praguicidas/toxicidade
11.
ACS Omega ; 9(6): 6976-6985, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371830

RESUMO

Alzheimer's disease (AD) is a long-term neurodegenerative condition characterized by impaired cognitive functions, particularly in the domains of learning and memory. Finding promising options for AD can be successful with a medication repurposing strategy. The goal of the research was to examine the neuroprotective characteristics of barbaloin in aluminum chloride (AlCl3)-induced cognitive deficits and changes in rats through modulation of oxidative stress, cytokines, and brain-derived neurotrophic factor (BDNF) expression. Thirty male Wistar rats were subjected to AlCl3 at a dosage of 100 mg/kg via the per oral route (p.o.), which induced cognitive decline. Morris water maze (MWM) is used to assess behavioral metrics. Assays for catalase (CAT), malondialdehyde (MDA), reduced glutathione (GSH), acetylcholinesterase (AChE), choline-acetyltransferase (ChAT), interleukins-1ß (IL-1ß), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), nuclear factor kappa-B (NF-κB), interleukins-6 (IL-6), BDNF, and neurotransmitter levels [dopamine (DA), acetylcholine (Ach), and γ-aminobutyric acid (GABA)] were performed. Results: The transfer latency time was notably decreased, and substantial modifications in the concentrations of GSH, MDA, CAT, SOD, AChE, ChAT and observed modulations in the formation of interleukins-6 (IL-6), TNF-α, IL-1ß, BDNF, and NF-κB were also evidenced after the treatment of rats with barbaloin in comparison to AlCl3-induced control groups. Significant alterations in neurotransmitter levels (DA, Ach, and GABA) were also seen in barbaloin-treated groups in comparison to AlCl3-induced groups. The current investigation has provided evidence that the administration of barbaloin yielded notable enhancements in cognitive function in rats through the inhibition of MDA, enhancing endogenous antioxidant enzymes, reduction of cytokine levels, and enhancement of neurotransmitter contents in the brain. These effects were observed in comparison to a control group treated with AlCl3 and can be attributable to barbaloin's strong anti-inflammatory and antioxidant properties, and metal chelating properties may contribute to its neuroprotective effects. Barbaloin may also promote neuronal survival and enhance learning and memory by upregulating the expression of BDNF.

12.
Pathol Res Pract ; 255: 155157, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320440

RESUMO

Lung cancer (LCs) is still a serious health problem globally, with many incidences attributed to environmental triggers such as Volatile Organic Compounds (VOCs). VOCs are a broad class of compounds that can be released via various sources, including industrial operations, automobile emissions, and indoor air pollution. VOC exposure has been linked to an elevated risk of lung cancer via multiple routes. These chemicals can be chemically converted into hazardous intermediate molecules, resulting in DNA damage and genetic alterations. VOCs can also cause oxidative stress, inflammation, and a breakdown in the cellular protective antioxidant framework, all of which contribute to the growth of lung cancer. Moreover, VOCs have been reported to alter critical biological reactions such as cell growth, apoptosis, and angiogenesis, leading to tumor development and metastasis. Epidemiological investigations have found a link between certain VOCs and a higher probability of LCs. Benzene, formaldehyde, and polycyclic aromatic hydrocarbons (PAHs) are some of the most well-researched VOCs, with comprehensive data confirming their cancer-causing potential. Nevertheless, the possible health concerns linked with many more VOCs and their combined use remain unknown, necessitating further research. Identifying the toxicological consequences of VOCs in LCs is critical for establishing focused preventative tactics and therapeutic strategies. Better legislation and monitoring mechanisms can limit VOC contamination in occupational and environmental contexts, possibly reducing the prevalence of LCs. Developing VOC exposure indicators and analyzing their associations with genetic susceptibility characteristics may also aid in early identification and targeted therapies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Neoplasias Pulmonares , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/efeitos adversos , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise
13.
Artigo em Inglês | MEDLINE | ID: mdl-38310448

RESUMO

Drug repurposing is an ongoing and clever strategy that is being developed to eradicate tuberculosis amid challenges, of which one of the major challenges is the resistance developed towards antibiotics used in standard directly observed treatment, short-course regimen. Surpassing the challenges in developing anti-tuberculous drugs, some novel host-directed therapies, repurposed drugs, and drugs with novel targets are being studied, and few are being approved too. After almost 4 decades since the approval of rifampicin as a potent drug for drugsusceptible tuberculosis, the first drug to be approved for drug-resistant tuberculosis is bedaquiline. Ever since the urge to drug discovery has been at a brisk as this milestone in tuberculosis treatment has provoked the hunt for novel targets in tuberculosis. Host-directed therapy and repurposed drugs are in trend as their pharmacological and toxicological properties have already been researched for some other diseases making the trial facile. This review discusses the remonstrance faced by researchers in developing a drug candidate with a novel target, the furtherance in tuberculosis research, novel anti-tuberculosis agents approved so far, and candidates on trial including the host-directed therapy, repurposed drug and drug combinations that may prove to be potential in treating tuberculosis soon, aiming to augment the awareness in this context to the imminent researchers.

14.
Pathol Res Pract ; 254: 155121, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262269

RESUMO

Glioblastoma is a prevalent form of carcinoma that exhibits a greater incidence rate across diverse demographics globally. Despite extensive global efforts, GBM continues to be a highly lethal disease that is characterized by a grim prognosis. There is a wealth of evidence suggesting that the pathophysiology of GBM is associated with the dysregulation of numerous cellular and molecular processes. The etiology of GBM may involve various cellular and molecular pathways, including EGFR, PDCD4, NF-κB, MAPK, matrix metalloproteinases, STAT, and Akt. MicroRNAs, short non-coding RNA molecules, regulate gene expression and mRNA translation after transcription but before translation to exert control over a wide range of biological functions. Extensive research has consistently demonstrated the upregulation of miRNA-21 in glioma, indicating its involvement in diverse biological pathways that facilitate tumor cell survival. By explaining the intricate interplay between miR-21 and the regulation of apoptosis in GBM, this review has the potential to significantly enhance our comprehension of the illness and provide potential targets for therapeutic intervention.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , MicroRNAs/metabolismo , Apoptose/genética , Regulação Neoplásica da Expressão Gênica/genética , Proliferação de Células , Proteínas de Ligação a RNA/genética , Proteínas Reguladoras de Apoptose/metabolismo
15.
CNS Neurol Disord Drug Targets ; 23(4): 411-419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37157197

RESUMO

General anaesthetics (GA) have been in continuous clinical use for more than 170 years, with millions of young and elderly populations exposed to GA to relieve perioperative discomfort and carry out invasive examinations. Preclinical studies have shown that neonatal rodents with acute and chronic exposure to GA suffer from memory and learning deficits, likely due to an imbalance between excitatory and inhibitory neurotransmitters, which has been linked to neurodevelopmental disorders. However, the mechanisms behind anaesthesia-induced alterations in late postnatal mice have yet to be established. In this narrative review, we present the current state of knowledge on early life anaesthesia exposure-mediated alterations of genetic expression, focusing on insights gathered on propofol, ketamine, and isoflurane, as well as the relationship between network effects and subsequent biochemical changes that lead to long-term neurocognitive abnormalities. Our review provides strong evidence and a clear picture of anaesthetic agents' pathological events and associated transcriptional changes, which will provide new insights for researchers to elucidate the core ideas and gain an in-depth understanding of molecular and genetic mechanisms. These findings are also helpful in generating more evidence for understanding the exacerbated neuropathology, impaired cognition, and LTP due to acute and chronic exposure to anaesthetics, which will be beneficial for the prevention and treatment of many diseases, such as Alzheimer's disease. Given the many procedures in medical practice that require continuous or multiple exposures to anaesthetics, our review will provide great insight into the possible adverse impact of these substances on the human brain and cognition.


Assuntos
Anestesia , Anestésicos , Isoflurano , Propofol , Humanos , Camundongos , Animais , Idoso , Anestésicos/farmacologia , Isoflurano/farmacologia , Propofol/farmacologia , Genômica
16.
Pathol Res Pract ; 253: 154959, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029713

RESUMO

Cancer is a complex disease that causes abnormal genetic changes and unchecked cellular growth. It also causes a disruption in the normal regulatory processes that leads to the creation of malignant tissue. The complex interplay of genetic, environmental, and epigenetic variables influences its etiology. Long non-coding RNAs (LncRNAs) have emerged as pivotal contributors within the intricate landscape of cancer biology, orchestrating an array of multifaceted cellular processes that substantiate the processes of carcinogenesis and metastasis. Metastasis is a crucial driver of cancer mortality. Among these, MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) has drawn a lot of interest for its function in encouraging metastasis via controlling the Epithelial-Mesenchymal Transition (EMT) procedure. MALAT1 exerts a pivotal influence on the process of EMT, thereby promoting metastasis to distant organs. The mechanistic underpinning of this phenomenon involves the orchestration of an intricate regulatory network encompassing transcription factors, signalling cascades, and genes intricately associated with the EMT process by MALAT1. Its crucial function in transforming tumor cells into an aggressive phenotype is highlighted by its capacity to influence the expression of essential EMT effectors such as N-cadherin, E-cadherin, and Snail. An understanding of the MALAT1-EMT axis provides potential therapeutic approaches for cancer intervention. Targeting MALAT1 or its downstream EMT effectors may reduce the spread of metastatic disease and improve the effectiveness of already available therapies. Understanding the MALAT1-EMT axis holds significant clinical implications. Therefore, directing attention towards MALAT1 or its downstream mediators could present innovative therapeutic strategies for mitigating metastasis and improving patient prognosis. This study highlights the importance of MALAT1 in cancer biology and its potential for cutting back on metastatic disease with novel treatment strategies.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular Tumoral
17.
Rev Med Virol ; 34(1): e2491, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985599

RESUMO

The immunopathology of herpes simplex virus (HSV)-associated neuroinflammation is a captivating and intricate field of study within the scientific community. HSV, renowned for its latent infection capability, gives rise to a spectrum of neurological expressions, ranging from mild symptoms to severe encephalitis. The enigmatic interplay between the virus and the host's immune responses profoundly shapes the outcome of these infections. This review delves into the multifaceted immune reactions triggered by HSV within neural tissues, intricately encompassing the interplay between innate and adaptive immunity. Furthermore, this analysis delves into the delicate equilibrium between immune defence and the potential for immunopathology-induced neural damage. It meticulously dissects the roles of diverse immune cells, cytokines, and chemokines, unravelling the intricacies of neuroinflammation modulation and its subsequent effects. By exploring HSV's immune manipulation and exploitation mechanisms, this review endeavours to unveil the enigmas surrounding the immunopathology of HSV-associated neuroinflammation. This comprehensive understanding enhances our grasp of viral pathogenesis and holds promise for pioneering therapeutic strategies designed to mitigate the neurological ramifications of HSV infections.


Assuntos
Herpes Simples , Simplexvirus , Humanos , Doenças Neuroinflamatórias , Imunidade Adaptativa , Citocinas
18.
Pathol Res Pract ; 253: 154991, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070223

RESUMO

Lung cancer remains a formidable global health burden, necessitating a comprehensive understanding of the underlying molecular mechanisms driving its progression. Recently, lncRNAs have become necessary controllers of various biological functions, including cancer development. MALAT1 has garnered significant attention due to its multifaceted role in lung cancer progression. Lung cancer, among other malignancies, upregulates MALAT1. Its overexpression has been associated with aggressive tumor behavior and poor patient prognosis. MALAT1 promotes cellular proliferation, epithelial-mesenchymal transition (EMT), and angiogenesis in lung cancer, collectively facilitating tumor growth and metastasis. Additionally, MALAT1 enhances cancer cell invasion by interacting with numerous signaling pathways. Furthermore, MALAT1 has been implicated in mediating drug resistance in lung cancer, contributing to the limited efficacy of conventional therapies. Recent advancements in molecular biology and high-throughput sequencing technologies have offered fresh perspectives into the regulatory networks of MALAT1 in lung cancer. It exerts its oncogenic effects by acting as a ceRNA to sponge microRNAs, thereby relieving their inhibitory effects on target genes. Moreover, MALAT1 also influences chromatin remodeling and post-translational modifications to modulate gene expression, further expanding its regulatory capabilities. This review sheds light on the multifaceted roles of MALAT1 in lung cancer progression, underscoring its potential as an innovative therapeutic target and diagnostic biomarker. Targeting MALAT1 alone or combined with existing therapies holds promise to mitigate lung cancer progression and improve patient outcomes.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , Transdução de Sinais/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
19.
Pathol Res Pract ; 253: 155015, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103364

RESUMO

Long non-coding RNAs (lncRNAs) have been demonstrated to have a crucial function in the modulation of the activity of genes, impacting a variety of homeostatic processes involving growth, survival, movement, and genomic consistency. Certain lncRNAs' aberrant expression has been linked to carcinogenesis, tumor growth, and therapeutic resistance. They are beneficial for the management of malignancies since they can function as cancer-causing or cancer-suppressing genes and behave as screening or prognosis indicators. The modulation of the tumor microenvironment, metabolic modification, and spread have all been linked to lncRNAs in lung cancer. Recent research has indicated that lncRNAs may interact with various mTOR signalling systems to control expression in lung cancer. Furthermore, the route can affect how lncRNAs are expressed. Emphasizing the function of lncRNAs as crucial participants in the mTOR pathway, the current review intends to examine the interactions between the mTOR cascade and the advancement of lung cancer. The article will shed light on the roles and processes of a few lncRNAs associated with the development of lung cancer, as well as their therapeutic prospects.


Assuntos
Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinogênese/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Microambiente Tumoral
20.
Artigo em Inglês | MEDLINE | ID: mdl-38060041

RESUMO

This comprehensive review aims to provide an overview of the pharmacological properties of erucic acid (EA) and highlight areas that require further research. EA is an omega-9 fatty acid found in certain vegetable oil, such as rapeseed oil has demonstrated favourable effects in rodents, including ameliorating myocardial lipidosis (fat accumulation in the heart muscle), congestive heart disease, hepatic steatosis (fat accumulation in the liver), and memory impairments. These findings have prompted regulatory bodies to establish limits on EA content in food oils. The studies were performed on rodents and led to caution on ingesting the EA at high levels. Moreover, EA is frequently utilized as a nutritional supplement for the treatment of adrenoleukodystrophy, myocardial disease, and memory improvement. The review of the article indicated that EA improves cognitive function, has a part in Huntington's disease, interacts with peroxisome proliferator-activated receptors, inhibits elastase and thrombin, has anti-inflammatory, antioxidant, and anti-tumour properties, and inhibits influenza A virus. This article elucidates the pharmacological effects of EA, an omega-9 fatty acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...